Evaluation of a minimally invasive renal cooling device using heat transfer analysis and an in vivo porcine model.
نویسندگان
چکیده
Partial nephrectomy is the gold standard treatment for renal cell carcinoma. This procedure requires temporary occlusion of the renal artery, which can cause irreversible damage due to warm ischemia after 30 min. Open surgical procedures use crushed ice to induce a mild hypothermia of 20°C in the kidney, which can increase allowable ischemia time up to 2.5 h. The Kidney Cooler device was developed previously by the authors to achieve renal cooling using a minimally invasive approach. In the present study an analytical model of kidney cooling in situ was developed using heat transfer equations to determine the effect of kidney thickness on cooling time. In vivo porcine testing was conducted to evaluate the cooling performance of this device and to identify opportunities for improved surgical handling. Renal temperature was measured continuously at 6 points using probes placed orthogonally to each other within the kidney. Results showed that the device can cool the core of the kidney to 20°C in 10-20 min. Design enhancements were made based on surgeon feedback; it was determined that the addition of an insulating air layer below the device increased difficulty of positioning the device around the kidney and did not significantly enhance cooling performance. The Kidney Cooler has been shown to effectively induce mild renal hypothermia of 20°C in an in vivo porcine model.
منابع مشابه
Experimental Investigation of Heat Transfer Enhancement in a Finned U-Shaped Heat Pipe of CPU Cooling System Using Different Fluids
This paper experimentally studies the heat absorption performance of a heat sink with vertical embedded heat pipes in the aluminum blade. The cooling system with embedded heat pipes distributes heat from the CPU to both the base plate and the heat pipes, and then transfer heat from fins to the Environment. The thermal resistance and heat transfer coefficient are evaluated for natural convection...
متن کاملInnovative Renal Cooling Device for Use in Minimally Invasive Surgery
Over 58,000 patients suffer from renal cell carcinoma annually in the US. Treatment for this cancer often requires surgical removal of the cancerous tissue in a partial nephrectomy procedure. In open renal surgery, the kidney is placed on ice to increase allowable ischemia time; however there is no widely accepted method for reducing kidney temperature during minimally invasive surgery. A novel...
متن کاملIrreversibility Analysis of MHD Buoyancy-Driven Variable Viscosity Liquid Film along an Inclined Heated Plate Convective Cooling
Analysis of intrinsic irreversibility and heat transfer in a buoyancy-driven changeable viscosity liquid along an incline heated wall with convective cooling taking into consideration the heated isothermal and isoflux wall is investigated. By Newton’s law of cooling, we assumed the free surface exchange heat with environment and fluid viscosity is exponentially dependent on temperature. Appropr...
متن کاملTwo Phase Flow Simulation for Subcooled Nucleat Boiling Heat Transfer Calculation in Water Jacket of Diesel Engine
Basic understanding of the process of coolant heat transfer inside an engine is an indispensable prerequisite to devise an infallible cooling strategy. Coolant flow and its heat transfer affect the cooling efficiency, thermal load of heated components, and thermal efficiency of a diesel engine. An efficient approach to studying cooling system for diesel engine is a 3D computational fluid dynami...
متن کاملA Double Pipe Heat Exchanger Design and Optimization for Cooling an Alkaline Fuel Cell System
In the presented research, heat transfer of a mobile electrolyte alkaline fuel cell (AFC) (which the electrolyte has cooling role of system) has been considered. Proper control volumes of system with specific qualification have been chosen. Consequently, heat and mass transfer in control volumes have been assessed. Considerations on them and contributed models lead to approve a double tube heat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical engineering & physics
دوره 35 6 شماره
صفحات -
تاریخ انتشار 2013